

 ARL-TN-0782 ● SEP 2016

 US Army Research Laboratory

Android: Call C Functions with the Native
Development Kit (NDK)

by Hao Q Vu

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TN-0782 ● SEP 2016

 US Army Research Laboratory

Android: Call C Functions with the Native
Development Kit (NDK)

by Hao Q Vu
Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2016
2. REPORT TYPE

Technical Note
3. DATES COVERED (From - To)

02/2016–05/2016
4. TITLE AND SUBTITLE

Android: Call C Functions with the Native Development Kit (NDK)
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Hao Q Vu
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-SES-P
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TN-0782

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Android Native Development Kit (NDK) provides a Java Android application a simplified mechanism to call embedded
C native codes, which are used to increase the performance of a computationally intensive application. This step-by-step guide
is intended to assist programmers with how to attach an NDK plugin to an Android Integrated Development Environment and
how to call C functions from a Java application.

15. SUBJECT TERMS

Android, NDK, Native Development Kit, C callable, Java Native Interface, JNI, Java, C/C++

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

20

19a. NAME OF RESPONSIBLE PERSON

Hao Q Vu
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

301-394-5324
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures iv

1. Introduction 1

2. Android Studio IDE 1

3. Android NDK Package 1

3.1 Method 1 1

3.2 Method 2 2

4. Configure NDK with Android Studio IDE 1.5.1 2

5. Create an Android Application 6

6. Final Build and Run Android Application 13

7. Conclusion 13

Distribution List 14

Approved for public release; distribution is unlimited.
iv

List of Figures

Fig. 1 Create Tool window ...3

Fig. 2 “Javah” path ...3

Fig. 3 Environment path ...5

Fig. 4 NDK-BUILD CLEAN configuration ..6

Fig. 5 Android application ...6

Fig. 6 Java codes to add 2 integer numbers..7

Fig. 7 Native library Java class ..7

Fig. 8 JNI directory ..8

Fig. 9 JNI header file ..9

Fig. 10 Create a C source file ...10

Fig. 11 Java native C functions ..10

Fig. 12 Android.mk makefile ...11

Fig. 13 Application.mk makefile..12

Approved for public release; distribution is unlimited.
1

1. Introduction

With its compact form factor, portability, low power consumption, and increasing
processing power, the Android mobile platform is gaining popularity as a
replacement for traditional desktop or laptop computers as a processing platform.
Most digital signal processing algorithms developed at the US Army Research
Laboratory are written in the C programming language to provide sufficient
processing power to satisfy typical processing and performance requirements.
Typical applications developed for the Android mobile platform are written in
Java. Therefore, to achieve maximum speed, there is a need to bridge Java-based
applications to native C applications. Fortunately, a combination of the Android
Native Development Kit (NDK) and the Java Native Interface (JNI) provides such
a mechanism.

NDK is a toolset that allows users to build C/C++ functions into a static or
dynamic library or let the existing prebuilt library be called from an Android
application. JNI defines a way for managed code written in Java to interact with
native C/C++.

This guide is intended to take programmers through adding an NDK package into
an Android Studio Integrated Development Environment (IDE), to building a
simple Android application that calls a C function to add 2 integer values received
from the user screen.

2. Android Studio IDE

This guide assumes the user has already downloaded the Android Studio IDE and
has an extensive working knowledge of this development package. As of the
writing of this report, the version of Android Studio IDE was 1.5.1.

3. Android NDK Package

The Android NDK package can be downloaded via either of the following
methods.

3.1 Method 1

The latest version of the NDK package for one’s operating system can be
downloaded directly from “developer.android.com/ndk/downloads/index.html”.

Expand the package once it has downloaded.

Approved for public release; distribution is unlimited.
2

3.2 Method 2

Download the NDK package directly from Android Studio IDE:

1) Select the “Tools” tab.

2) Select “Android->SDK manager”.

3) Select “Appearance->System Settings->Android SDK”.

4) Select the “SDK Tools” tab.

5) Check the box labeled “Android NDK”.

6) Select “Apply”.

Wait for the package to be added into the Android Studio IDE. The downloaded
package can be found at “~/Library/Android/sdk/ndk-bundle”.

4. Configure NDK with Android Studio IDE 1.5.1

Perform the following steps to configure the NDK with Android Studio IDE,
version 1.5.1:

1) Set up the Android NDK location:

a) Select “File->Project Structure”.

b) Select “SDK Location”.

c) If Method 1 was chosen, enter the NDK location of where the
downloaded NDK package was expanded. If Method 2 was chosen,
then Android Studio will automatically fill in the NDK location.

2) Add the JAVAH, NDK-BUILD, and NDK-BUILD CLEAN paths:

JAVAH is a tool provided by Java SE to generate a C header and the
source files that are needed to implement native methods. Refer to
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javah.html
for a detailed description.

3) Configure the JAVAH path:

a) Select “Tools->Android->SDK Manager”.

b) Select “Tools->External Tools”.

c) Select “+” at the bottom of the right pane.

d) The “Create Tool” window (Fig. 1) will pop up.

Approved for public release; distribution is unlimited.
3

Fig. 1 Create Tool window

e) Enter the following to create a path for “javah”, as shown in Fig. 2.

Fig. 2 “Javah” path

Approved for public release; distribution is unlimited.
4

Notes:

• Program: This needs to point to where the JAVAH application is located
on the host.

• Parameters: The parameters are set to -classpath $Classpath$ -v –jni
$FileClass$

o -classpath specifies the path for “javah” to look for
 classes

o -v verbose

o -jni tells “javah” to create an output file with JNI-style
 native method function prototypes

• Working directory: All the required files needed to create a C callable
object are located in the “jni” directory.

NDK-BUILD is a shell script used to call a GNU “make” 3.81 or later. Use
the following steps to configure it:

1) Configure the NDK-BUILD path:

a) Select “Tools->Android->SDK Manager”.

b) Select “Tools->External Tools.

c) Select “+” at the bottom of the right pane.

d) The “Create Tool” window (see Fig. 1) will pop up.

e) Enter the following to create an environment path for NDK-BUILD, as
shown in Fig. 3:

• Program: This points to the location to where NDK-BUILD is
located.

• Parameters: Leave blank.

• Working directory: This points to where all the Java files are
located.

Approved for public release; distribution is unlimited.
5

Fig. 3 Environment path

NDK-BUILD CLEAN is used to remove all previously generated binaries. Use
the following steps to configure it:

1) Configure the NDK-BUILD CLEAN path:

a) Follow the same steps as if configuring the NDK-BUILD path, except
the parameter is set to “clean”.

b) The final NDK-BUILD CLEAN configuration screen should look like
Fig. 4.

Approved for public release; distribution is unlimited.
6

Fig. 4 NDK-BUILD CLEAN configuration

5. Create an Android Application

This guide assumes that the user is well versed in using the Android Studio IDE
to create an Android application. Therefore, a step-by-step guide on how to create
an Android application has not been included. A simple Android application is
provided as an example highlighting the functionality outlined in this report.

A newly created Android application is shown is Fig. 5.

Fig. 5 Android application

The user can then add the ability to read in 2 integer numbers, as shown in Fig. 6.

Approved for public release; distribution is unlimited.
7

Fig. 6 Java codes to add 2 integer numbers

To do this, the user must set up a sequence to call a C function from an Android
application:

1) Create a native library Java class as shown in Fig. 7. This class resides in
the “src “directory. This class includes an Android system call to load the
library that was written in C and all the C function prototypes.

Fig. 7 Native library Java class

Approved for public release; distribution is unlimited.
8

2) Create the JNI directory as shown in Fig. 8, to store all related C source
files and H header files:

a) Select “app->New->Folder->JNI folder”.

b) Select “Finish”. The “jni” directory should appear under the “app”
directory.

Fig. 8 JNI directory

3) Create the JNI header file using the external tool JAVAH, as shown in
Fig. 9:

a) Select “NativeLib->NDK->javah”:

Based on the Java class created earlier, a header file will appear under
the “jni” directory that has the following naming convention.

• PackageName: com_example_haovu_addtwonumbers

• Followed by the NativeJavaClassname: NativeLib

• Followed by the .h extension

• Example: com_example_haovu_ addtwonumbers_NativeLib.h

b) The newly created header file contains the Java native function
prototypes with the following format:

• JNIEXPORT

• The function return type

Approved for public release; distribution is unlimited.
9

• JNICALL

• Java

• Followed by the PackageName

• Followed by the NativeJavaClassname

• Followed by the FunctionName

• Example: JNIEXPORT jint JNICALL Java_com_example_
haovu_addtwonumbers_NavtiveLb add (JNIEnv *, jobject, jint,
jint)

Fig. 9 JNI header file

c) Under the “jni” directory, create a C source file (NativeLib_C.c), as
shown in Fig. 10, to implement the native C functions:

i) Select “jni->New->C/C++ Source File”.

ii) Enter the filename and type.

iii) Select “OK”.

Approved for public release; distribution is unlimited.
10

Fig. 10 Create a C source file

d) Implement the Java native C functions as shown in Fig. 11.

Fig. 11 Java native C functions

Approved for public release; distribution is unlimited.
11

e) Modify “build.gradle (Module:app)”:

i) Inside the “defaultConfig” section, add the following pseudo code:

sourceSets {
 main{
 jni.srcDirs = []
 jniLibs.srcDir “src/main/libs”
 }
}

f) Create an “Android.mk” makefile, shown in Fig. 12, under the “jni”
directory to determine how to build the C code:

i) Select “jni->New->File”.

ii) Enter “Android.mk” as the filename.

Fig. 12 Android.mk makefile

Approved for public release; distribution is unlimited.
12

g) Create the “Application.mk” makefile, shown in Fig. 13, under the
“jni” directory to tell the NDK what architecture it should build the
shared library for:

i) Select “jni->New->File”.

ii) Enter “Application.mk” as the filename.

Fig. 13 Application.mk makefile

Note: This application.mk requests the NDK to build a shared library for all
supported architectures. The following details how to build a shared library:

1) Select “app->NDK->ndk-build”:

• A “libs” directory that stores the shared library for all the architectures
is automatically created.

• All the supported architecture directories are created.

• Under each architecture directory, a shared library for that particular
architecture can be found.

Approved for public release; distribution is unlimited.
13

6. Final Build and Run Android Application

Perform the following steps to create the final build and run the Android
application:

1) Select “Build->Make Project”.

2) Select “Run-> Run ‘app’”.

7. Conclusion

This guide summarizes all the necessary mechanisms and steps to guide a novice
Android application developer to build an Android application that is capable of
handling a high-intensive computation requirement.

Approved for public release; distribution is unlimited.
14

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO L
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 8 US ARMY RSRCH LAB
 (PDF) RDRL SES P
 C REIFF
 D GONSKI
 H VU
 L SIM
 M SCANLON
 S TENNEY
 W ALBERTS II
 RDRL SES S
 B MAYS

	List of Figures
	1. Introduction
	2. Android Studio IDE
	3. Android NDK Package
	3.1 Method 1
	3.2 Method 2

	4. Configure NDK with Android Studio IDE 1.5.1
	5. Create an Android Application
	6. Final Build and Run Android Application
	7. Conclusion

